The role of supercomputing
The study was among the first conducted on the new 1.5 petaflops Yellowstone supercomputer. The IBM system, operated by NCAR and supported by funding from NSF and the University of Wyoming, is one of the world’s most powerful computers dedicated to research in the atmospheric and related sciences.
“High resolution models can consume significant time and resources on massive computers, but as shown in this research, they’re often required for accurate regional ozone projections,” said Irene Qualters, division director for Advanced Computing Infrastructure at NSF.
“Running these models wouldn’t have been possible without the parallel processing power of the Yellowstone supercomputer, a critical part of NSF’s cyberinfrastructure.
“The work will also help other researchers in related climate topics determine scenarios where coarse resolution is sufficient and, conversely, where high resolution is needed.”
Thanks to its computing power, the scientists were able to simulate pollution levels hour-by-hour for 39 hypothetical summers.
This allowed the team to account for year-to-year variations in meteorological conditions, such as hot and dry vs. cool and wet, thereby getting a more detailed and statistically significant picture of future pollution levels.
To simulate the interplay of global climate with regional pollution conditions, the scientists turned to two of the world’s leading atmospheric models, both based at NCAR and developed through collaborations in the atmospheric sciences community.
They used the Community Earth System Model, funded primarily by the U.S. Department of Energy and NSF, to simulate global climate as well as atmospheric chemistry conditions.
They also used an air chemistry version of the multiagency Weather Research and Forecasting Model to obtain a more detailed picture of regional ozone levels.
Even with Yellowstone’s advanced computing speed, it took months to complete the complex simulations.
“This research would not have been possible even just a couple of years ago,” said Pfister.
“Without the new computing power made possible by Yellowstone, you cannot depict the necessary detail of future changes in air chemistry over small areas, including the urban centers where most Americans live.”