The authors speculate the reason for the thinner snow, especially in the Beaufort and Chukchi seas, may be that the surface freeze-up is happening later in the fall so the year’s heaviest snowfalls, in September and October, mostly fall into the open ocean.
What thinner snow will mean for the ice is not certain. Deeper snow actually shields ice from cold air, so a thinner blanket may allow the ice to grow thicker during the winter. On the other hand, thinner snow cover may allow the ice to melt earlier in the springtime.
Thinner snow has other effects, Webster said, for animals that use the snow to make dens, and for low-light microscopic plants that grow underneath the sea ice and form the base of the Arctic food web.
The new results support a 15-year-old UW-led study in which Russian and American scientists first analyzed the historic Arctic Ocean snow measurements. That paper detected a slight decline in spring snow depth that the authors believed, even then, was due to a shorter ice-covered season.
“This confirms and extends the results of that earlier work, showing that we continue to see thinning snow on the Arctic sea ice,” said Rigor, who was also a co-author on the earlier paper.
The recent fieldwork was part of NASA’s Operation IceBridge program, which is using aircraft to track changes while NASA prepares to launch a new ice-monitoring satellite in 2017. The team conducted research flights in spring 2012 as part of a larger program to monitor changes in the Arctic.
The research was supported by NASA and the U.S. Interagency Arctic Buoy Program. Co-authors are Son Nghiem at NASA’s Jet Propulsion Laboratory, Nathan Kurtz at NASA’s Goddard Space Flight Center, Sinead Farrell at the University of Maryland, Don Perovich at the federal Cold Regions Research and Engineering Laboratory and Matthew Sturm at the University of Alaska Fairbanks.
Pages: 1 2